

Energy Imbalance Market

Joe Taylor, Xcel Energy Manager, Transmission Access (303) 571-7642

Topic Outline

- Energy Imbalance Market Overview
- **WECC EIM Design Proposal**
- **Variable Generation Integration**
- Discussion, Next Steps and Q&A

Energy Imbalance Market (EIM) Overview

What is an EIM?

The EIM is...

- A Market for Balancing Energy
- Centralized Unit Dispatch for Balancing Energy
- Voluntary

The EIM is NOT...

- An RTO (with planning, dayahead markets, etc.)
- Centralized Unit Commitment
- Capacity market
- A replacement for current contractual business structure

What is Imbalance Energy?

Imbalance energy (or Energy Imbalance) is the difference between what actually happens for each generator and load location, and what they prearranged through schedules

Energy Imbalance = Actual Production or Usage – Scheduled Production or Usage

- Asset owners are instructed to move their generation output based on offer curves while maintaining reliability and balance (matching generation to load)
- The amount of increase or decrease in generation is paid for by the asset owner needing the energy

EIM Highlights

- Resources may either be "Available" for market dispatch or "Self-dispatched" to serve scheduled transactions and/or native load
- Dispatch is regional and is calculated using a security constrained, offer-based economic dispatch (SCED) every 5 minutes
- Self-dispatched still subject to imbalance settlement if actual output does not match scheduled output
- Resources that have elected to be market dispatched ("Available") will have their offered range subject to market dispatch control

What is the EIM?

- EIM provides asset owners the infrastructure necessary to offer their resources into the marketplace for use in providing Energy Imbalance.
- In the EIM, the Market Operator owns the responsibility of accounting for and financially settling all EI amounts.
 - Market Operator will remain revenue neutral

What is the EIM?

- The EIM does not supersede any MP's obligations with respect to any other capacity or ancillary service obligations.
 - Balancing Authorities (BA) and asset owners will continue to use the same procedures used today to manage capacity adequacy, reserves, and other reliability-based concerns.
- All MPs with load and/or resources within the market footprint will be subject to El settlement under this market.
 - Any difference between scheduled and actual
- All asset owners must register with the Market Operator.

Features of EIM

- Uses regional <u>security-constrained economic</u> <u>dispatch (SCED)</u>
 - Balancing Area regulating burden drops to 5minute variability instead of hourly
- Generators are dispatched based on voluntary market-based offers to transact energy
- Operational impact is projected to include increased reliability and reduced operating costs

Features of EIM

- Schedule using physical right
- Curtailment calculator tool assigns curtailment obligation based on transmission service priority
 - SPP uses IDC/CAT
 - **WECC proposed ECC**
- Market Price for imbalance, no penalty

WECC EIM Design Proposal

WECC EIM Design Proposal

- Adoption (generally) of SPP Market design
 - Many enhancements since 2007 market launch
 - Offer structure improvements
 - **■** Congestion Management/TLR & CAT
- Proposal includes some transfer of reliability standards compliance obligations to regional operator
 - Actual standards to be determined by market participants and selected market operator

WECC EIM Design Proposal

- Regional balancing market operator function but not an RTO nor an all-in regional transmission tariff
 - Transmission providers retain their own OASIS and Available Transfer Capability (ATC) calculations
 - "Imputed" transmission service charge without reservation, applied after-the-fact

Variable Generation Integration

Variable Generation Integration

- "Traditional" BA operations focus on fixed hourly energy interchange (imports or exports) and all intra-hour balance between generation and load managed with internal resources
- This traditional style already poses significant operating challenges to some utilities in the Western Interconnection
 - Increasing load-following reserve duty in host balancing areas

Variable Generation Integration - Issues

- Wind is naturally uncontrollable in the up-direction
- Wind output usually highest at night and drops off during load pick-up
- Trip of multiple wind turbines in an area can become the largest single contingency in the footprint
 - Large wind drop-off events not yet characterized as a "contingency" by the industry

Variable Generation Integration - EIM

- EIM SCED Solution repositions resources every 5 minutes to obtain the optimal economic and reliable solution
 - An added benefit is the solution counteracts volatility in resource output & load forecasting errors

Next Steps / Discussion / Q & A

Upcoming EIM Activities

- WECC BOD meetings June, September and December
 - WECC B/C analysis of EIM scheduled for the June BOD meeting
 - WECC organizational and regional risk assessment of the EIM proposal scheduled for the September BOD meeting

Critical Decisions Remain

- Individual utility analysis of costs/benefits
- Critical Mass of utilities
 - WestConnect Participants
 - Columbia Grid
 - Northern Tier
- Organizational identity for the market operator
 - **WECC?**
 - Contract with SPP or other existing market?
 - Software Developer?

Critical Decisions Remain

- Mid-level design specification sufficient to get a specific implementation cost estimate.
 - WECC cost analysis has a wide range based on desired structure and services
- Tariff development & cost recovery for:
 - the EIM itself
 - the balancing area cost to prepare for startup
- Revenue distribution methodology for EIM-based transmission service, which is a novel feature of the EIM proposal compared to other regional markets.

Critical Decisions Remain

- Establishment of funding and financing for the EIM startup
- Establishment of Seams Coordination Agreements between the EIM footprint, Non-EIM participants, and the CAISO

Xcel Energy®

Additional Information

Imbalance Energy Example

Generator A is scheduled to provide Load B 100 MWh of energy.

But at the end of the hour, the energy output of Generator A was only 90 MWh, and the energy consumption of Load B was also only 90 MWh.

Has an imbalance occurred in this situation?

Note: Generation Injections are (-) and Load Withdrawals are (+)

Imbalance Energy Example

Imbalance (Gen A) = (-90 MWh Actual) – (-100 MWh Scheduled) Imbalance (Gen A) = 10 MWh

Imbalance (Load B) = (90 MWh Actual) – (100 MWh Scheduled) Imbalance (Load B) = -10MWh

Notice that even though the *system* was in balance (generation matched load), by definition there was an imbalance at each location. Actual and Scheduled were not equal.

Southwest Power Pool (SPP) Experience

SPP Organization

- Founded in 1941
- 1991 Implemented Reserve Sharing
- 1997 Reliability Coordination
- 1998 Tariff Administration
- 2001 Regional Scheduling
- 2004 FERC approved RTO
- 2007 Launch of EIS Market
- 2014 Launch full LMP/ASM
- SPP Inc
 - RTO and Regional Reliability Organization
- SPP 45 GW peak load (Market Footprint)
- 16 BAs

SPP EIS Market Launch

- **February 1, 2007**
- Novel design
- Low Cost
 - Ongoing enhancement/improvements
- SPP EIS Market economic benefits
 - SPP-wide: \$103 million in economic benefits (2007), 20% higher than C/B study predicted

Market Participation

Self-Dispatched Resources Introduction

- Dispatch value will be the sum of all schedules
- These resources may only be dispatched outside of the sum of the schedules in a system emergency (a manual dispatch instruction sent by the Market Operator).

"Self-Scheduled Only"

There is a non-zero EIM settlement for this Generator during hours where "Actual MWH" not equal to the "Scheduled MWH"

Transmission service priority for Scheduled MW = OATT basis. Priority for EIM dispatch = 0

*Such differences may occur in normal operations due to plant conditions, for example.

"Offered and Scheduled"

Blue volumes netted for the hour and paid this net volume times the hourly integrated Locational Imbalance Price.

Transmission service priority for Scheduled MW = OATT basis. Priority for EIM dispatch = 0

"Offered" or "Manual" or Price-Taker", No Schedule

Dispatchable Generator credited for entire output volume times the hourly integrated Locational Imbalance Price.

Transmission service priority for EIM dispatch = 0

- GenA has a bilateral contract with Load A and schedules 200 MWh at \$40/MWh to Load A.
- It costs GenA \$30/MWh to produce the energy.
- Generator A has a profit of:

$$($40/MWh - $30/MWh) \times 200 MWh = $2,000$$

- GenA and Load A have a bilateral schedule for 200 MWh.
- GenA also decides to offer its generation into the market @ \$40/MWh.
- The EIM can provide energy @ \$25/MWh from other resources.
- Therefore, GenA instructed to go to Min MW (10 MW) because its price is higher than the LIP.

Gen A EIS = (Actual – Scheduled) x LIP

Gen A EIS = $[-10 \text{ MWh} - (-200 \text{ MWh})] \times \$25/\text{MWh}$

Gen A EIS = 190 MWh x \$25/MWh

Gen A EIS = \$4,750 (Paid to market)

A positive value

GenA pays market \$4,750

Market Operator disperses this money to the generator(s) that provided the 190 MW of energy.

Gen B EIS = (Actual – Scheduled) x LIP

Gen B EIS = $[-190 \text{ MWh} - (0 \text{ MWh})] \times \$25/\text{MWh}$

Gen B EIS = -190 MWh x \$25/MWh

Gen B EIS = - \$4,750 (paid to this resource)

A negative value

Market Operator pays Gen B \$4,750

Load A EIS = (Actual – Scheduled) x LIP

Load A EIS = $(200 \text{ MWh} - 200 \text{ MWh}) \times \$25/\text{MWh}$

Load A EIS = 0 MWh x \$25/MWh

Load A EIS = \$0

No change to scheduled withdrawal

Load A pays no EIS

- GenA paid market \$4,750 in lieu of spending \$5,700 to generate the 190 MWh of energy itself.
 - This saved GenA \$950 by offering the resource to the Market
- GenA continues to receive compensation from load A under its bilateral agreement (200MWh x \$40/MWh) of \$8000.
- GenA profits increased from \$2000, to \$2950

Market Participation Comparison

<u>GEN</u>	NO MARKET PARTICIPATION	MARKET PARTICIPATION	<u>MARKET</u> <u>PARTICIPATION</u>
Rev. = \$40 x 200 MWh Cost = \$30 x 200 MWh	\$8,000 - 6,000 \$2,000	(LIP \$25/MWh)	(LIP \$50/MWh)
Rev. = \$40 x 200 MWh Cost = \$30 x 10 MWh \$25 x 190 MWh		\$8,000 - 300 <u>- 4,750</u> \$2,950	
Rev. = \$40 x 200 MWh Cost = \$30 x 200 MWh		n the bilateral is not ed by the LIP	\$8,000 - 6,000 \$2,000

LOAD Settlement

200 MWh - 200 MWh = 0 in any scenario, so load is not impacted.

Offer Curves

Offer Curves in the Market

- Offer Curves
 - Used by market system in determining the most economical dispatch of Market resources
 - Used in the calculation of LIP (Locational Imbalance Pricing)
 - Used with "Available" resources
 - Price of resource is specified through an offer curve

Offer Curves in the Market

- Resources that offer energy into the EIM must specify an offer price.
- The Offer Curve allows resources to offer multiple MW points at different prices.
- An offer curve is submitted for each resource and contains between two to ten monotonically increasing pairs of MW and price.

Submitted Data		
(MW) 0	\$ \$0.00	
100	\$20.00	
200	\$25.00	
400	\$25.01	
500	\$50.00	

Settlements

Introduction to Settlements

- The purpose of the settlement process is to:
 - Calculate quantity of energy imbalance for each asset
 - Calculate invoice dollars for energy imbalances
 - Allocate over- and under-collection of revenues to asset owners

Introduction to Settlements

- Each registered asset becomes a settlement location.
- Resources settled based on LIP associated with their settlement location.
- Load may choose to be settled either zonally or nodally.
- Resources that are self-dispatched will be responsible for any imbalance charges. They cannot "opt out."
- The market will be facilitated such that the Market Operator will remain revenue neutral.